
netCDF Calculator
User’s Guide

Donald W. Denbo

Version 1.3
February 1999

Table of Contents
Table of Contents . i

CHAPTER 1 Introduction . 1

CHAPTER 2 Tutorial Overview . 3

Introduction . 3

Specifying Time . 4

CHAPTER 3 Language Elements . 5

Data Types . 5

Operators . 7

Expressions . 7

Statements . 9
netCDF Calculator User’s Guide i

Table of Contents
Commands . 9

Logical structures . 10

Functions and Procedures . 10

CHAPTER 4 Functions . 13

Table of Functions . 13

CHAPTER 5 Commands . 15

APPENDIX A Reference Manual . 17

Expressions . 17

Statements and Control Flow . 28

Commands . 29

Input and Output . 32

Functions and Procedures . 35

Reserved Keywords, Tokens, and Variables 36

APPENDIX B Annotated Examples . 41

EPIC . 41

APPENDIX C PPLUS Interface . 51

Loading PPLUS Buffers . 52

PPLUS Symbols . 52

Using the Calculator with PPLUS . 52
ii netCDF Calculator User’s Guide

Table of Contents
APPENDIX D Proposed New Features . 53

netCDF Calculator API . 53

nccalc routines . 53

User routines . 56

Data Structures . 56

Inquiry commands . 58

More Field Functions . 59

Vector expressions . 60

Grid generation . 63

I/O - interaction with the keyboard . 64

Conditional evaluation . 64

Index . 65
netCDF Calculator User’s Guide

Table of Contents
iv netCDF Calculator User’s Guide

CHAPTER 1 Introduction
This manual describes a set of routines which provide data field manipulations with
EPIC Data System data files. These routines form a library which can be linked
with other programs, however, within the PPLUS scientific graphics system, they
are available through the PPLUS e command. In addition to the interactive alge-
braic manipulations, the e command also provides interactive data editing for use
with EPIC Data System data files. These files include EPIC observational data,
such as time series and CTD profiles, as well as any data file written in one of the
EPIC Data System supported formats, such as the multidimensional Unidata
netCDF format. All original PPLUS commands and functions are unchanged and
can be intermingled with the new e commands. PPLUS is an interactive scientific
graphics program, and EPIC is an interactive system for management, display and
analysis of oceanographic time series and hydrographic measurements. For more
information about these systems, see the PPLUS and EPIC manuals. These EPIC
System routines are available for use with PPLUS on VAX/VMS, Sun/Unix and
DEC/Ultrix systems.

EPIC Data System files are data files in any of the formats supported by the EPIC
Data System. These formats include the original EPIC formatted data files, which
are binary sequential VAX/VMS files containing one dimensional oceanographic
CTD data or time series data, and the newer EPIC implementation of the Unidata
netCDF format, which allows data up to four dimensions (x,y,z,time) and is hard-
ware independent under VAX/VMS, Ultrix and Unix (the same file can be read by
hardware with any of these operating systems). The dimensions of (x,y,z,time) are
netCDF Calculator User’s Guide 1

Introduction

2

longitude, latitude, depth and time. The four dimensions can also be given by indi-
ces (i,j,k,l), which represent the same geographic and time coordinates. The latter
notation is sometimes convenient for four dimensional model data. The geographic
coordinates of (x,y,z,t) are more often useful for observational oceanographic data.

Algebraic manipulations available under the e command include arithmetic opera-
tions (addition, subtraction, multiplication and division), exponentiation, log func-
tions, square root, and some additional functions such as differentiation,
integration, regridding and removing the mean value. In addition to the built-in
functions, the e command also allows user written routines for manipulation of
data. The e command also provides the ability to extract a subset of the EPIC Sys-
tem Data sets by specifying limits in any or all of the four dimensions (x,y,z,time)
or (i,j,k,l).

The e command includes an interactive data-editing function for one dimensional
data sets. This displays the data and provides for replacement of individual points
or a range of data points by linear interpolation or by typing in a replacement value.
Data sets generated by the e data manipulation or data editing functions can be plot-
ted with the standard PPLUS plotting commands and can also be written out as data
files in any of the EPIC System formats.

Examples of algebraic manipulations and data editing of EPIC data files are
included in this manual. Subsequent chapters describe the elements and syntax of
the language of the PPLUS e command. It is recommended that the new user read
the following Annotated Examples chapter, which includes a great deal of annota-
tion and explanation. It assumes that the reader is familiar with both EPIC and
PPLUS. The Annotated Examples chapter should allow the user to start using the e
command. The later chapters describing the language itself may be more valuable
as the user becomes more expert.
netCDF Calculator User’s Guide

CHAPTER 2 Tutorial Overview
Introduction

This chapter provides a brief description of the netCDF Calculator (nccalc). It
includes many examples for the user of the syntax and grammar of nccalc. There
are more explicit and detailed descriptions of the language in the following sections
on language elements and syntax. However, the new user may find that reading this
chapter is enough to start using nccalc.

nccalc is a language in itself. Its data types include scalar, string, slab and field. A
scalar is either a number, a variable representing a number, or a scalar array ele-
ment. A string is a character string (deliminated by double quotes) or a character
variable. A slab is a specification for a region of 4-dimensional space, for example,
[x=95W,y=2S,z=50,t=*] is a slab representing the region with longitude 95W, lati-
tude 2S, depth=50m and all times on the data file. A field is a multidimensional set
of data, for example, temperature[x=95W:110W ,y=2S:2N ,z=0:50, t= 8601010000
: 8701010000] is a field of temperature values for the region 95W to 110W, 2S to
2N, depths between 0 and 50 meters, and times during 1986. The slab for this field
can also be specified as [x=-95:-110,y=-2:2, z=0:50, t=198601010000 :
198701010000].
netCDF Calculator User’s Guide 3

Tutorial Overview

4

Specifying Time

nccalc is flexible in how time may be specified. Two basic formats are supported,
the relative number of days since the start of the netCDF file and the Woods Hole
date format. For example t=5.0, would indicated a time 5 days after the beginning
of the file and t=198902010000, would indicate Feb 1, 1989 00:00 GMT. nccalc
assumes that the first form if the value is less than 1000000.0 days. There are two
legal forms for the WHOI date format, yymmddhhmm, where 1900+yy is the year,
and yyyymmddhhmm, where yyyy is the year.
netCDF Calculator User’s Guide

CHAPTER 3 Language Elements
 the

et to
array
lar
Data Types

nccalc is a language in itself. Its data types include scalar, string, slab, field, and
vector. This section of the manual gives a simple description of each of these data
types. For a complete description of the language, its elements, and its syntax, see
the appendix titled Reference Manual.

Scalar

A scalar is either a number, a variable representing a number, or a scalar array ele-
ment. Scalars are distinct from fields in that scalar operators and functions operate
on a single number at a time, whereas, fields have implied loops over all indices.
Examples of scalars are the numbers 8, 12.4 and .007. In the statement:

a=3*12

the variable “a” is a scalar with value 36. The following example demonstrates
use of an scalar array, scalar arithmetic, and the scaler function “load”. In this
example, “b” is defined as a scalar array, and the first two elements of “b” are s
values 1 and 2. The scalar variable “c” is set tothe product of these two scalar
elements, and then is loaded into the PPLUS symbol “eps$scaler” with the sca
function “load”.
netCDF Calculator User’s Guide 5

Language Elements

6

o
g)”.

t file

o-

 lat-
lab is
 z,

e
0,
 has

=2S,
time
00].
array b[3]
b[1]=1
b[2]=2
c=b[1]*b[2]
load (c)

ppl>show eps$scaler
EPS$SCALER = 2

Scalar functions are functions which have scalars, scalar variables, or scalar array
elements as arguments.

String

A string is a character string (deliminated by double quotes) or a character variable.
The following is an example of a string: “This is a character string”. Here are tw
examples of string variables: a=”This is a character string” and b=”(a long strin
Here is an example of string concatenation:

f=”This is a character string”
g=”(a long string)”
h=f+” “+g

The result of the string concactination is h=”This is a character string (a long
string)”. The string can be used to set attributes in netCDF files and to construc
names for the openr, openw, and nextw commands.

Slab

A slab is a specification for a region of four-dimensional space. It has three ge
graphical or geometrical dimensions and one time dimension. For example,
[x=95W, y=2S, z=50, t=*] is a slab representing the region with longitude 95W,
itude 2S, depth=50m and all times on the data file. Another way to express a s
[i=1, j=5, k=10, l=*], where the indices (i, j, k ,l) represent the coordinates (x, y,
t). Another example of a slab is [x=95W:110W, y=10N:10S, z=200:300,
t=8601010000 : 8701010000], where ranges of x, y, z, and t are indicated in th
slab. The slab for this field can also be specified as [x=-95:-110, y=-2:2, z=0:5
t=198601010000 : 198701010000]. A slab variable is a variable to which a slab
been assigned, such as “a” in the following: a=[x=95W ,y=2S, z=50, t=*].

One slab may be modified by another slab. If slab a is defined as a=[x=95W ,y
z=50, t=*], then another slab b can be created which is just like a, except that
is restricted to the year 1986, as follows: b=[a, t=198601010000 : 1987010100
netCDF Calculator User’s Guide

Operators

ion
986.
in the
ple,

ion
tion
ical

 slab,
po-

on are
Field

A field is a multidimensional set, or subset, of data. The set or subset is defined by
the slab. For example, “temperature[x=95W:110W, y=2S:2N, z=0:50,
t=198601010000 : 198701010000]” is a field of temperature values for the reg
95W to 110W, 2S to 2N, depths between 0 and 50 meters, and times during 1
The field names (temperature in the preceeding example) are those available
current database. Slab variables can be used to specify fields, as in this exam
where sl is a slab variable and t1 is a field variable.

s1=[x=95W:110W,y=2S:2N,z=0:50,t=198601010000:198701010000]
t1=temperature[s1]

The following is an example of field algebra:

s1=[x=95W:110W,y=2S:2N,z=0:50,t=198601010000:198701010000]
u1=u[s1]
v1=v[s1]
spd=sqrt(u1*u1 + v1*v1)

Vector

e vector(uvel,wvel)

Operators

Binary operators are exponentiation (represented by ^), division (/), multiplicat
(*), addition (+), substraction (-), assignment (+), and logical operators of nega
(!), greater than (>), greater or equal (>=), less than (<), less or equal (<=), log
AND (&&), logical OR (||), and not equal (!=).

Expressions

nccalc is an expression language, much like C. Expressions are scalar, string,
dbase, field, or file and variable attribute expressions. Expressions are the com
nents of which statements are constructed. Examples of each type of expressi
given here:
netCDF Calculator User’s Guide 7

Language Elements

8

Scalar:

3
b
3*b
(3*b)
(3*b)/12

String:

“This is a character string”
a

Slab:

[x=95W,y=10N,z=300,t=198601010000:198701010000]
[x=95w:110W,y=-10,10,z=200:300,t=*]
[i=1:10,j=20,z=5,t=*]
[i=1:2*5,j=20,z=5,l=*]
s1
[s1, z=150] !slab s1 modified to select z=150

dbase:

epsin !default for most current input file
epsin_2 !default for second input file opened
epsout !default for current output file
epsout_3 !default for third output file opened
openr “/home/heron/taohome/data/t0n170w.cdf”!open for input
openw “output.file” “CDF”!open for output

field:

temp[z=*,t=*]
temp[i=1,j=1,z=*,t=*]
eps20[sl],[z=150]
t1 t1 is a field variable
t1-t2 !t1 and t2 are field variables
(t1-t2)/2.
sqrt((t1-t2)/w)) ! sqrt is a field function

file attributes:

epsin.CREATION_DATE
epsin.missing_value
epsout.missing_value
variable attributes:
wspeed.VARID
t1.VARID
t1.name
netCDF Calculator User’s Guide

Statements
t2.long_name

Statements

Statements are composed of expressions. One common type of statement is the
assignment statement. The following are examples of statements:

array b[3] !declares b as an array of dimension 3
b[1]=1 !assigns value1 to second element of b
b[2]=2
c=b[1]*b[2]
load (c) !function loads value of scalar c into

eps$scaler
f=”This is a character string”
g=”(a long character string)”
h=f+” “+g
s1=[x=95W:110W,y=2S:2N,z=0:50,t=198601010000:198701010000]
u1=u[s1]
v1=v[s1]
spd=sqrt(u1*u1 + v1*v1)

Control flow statements include while, if,and if-else. Examples follow:

if (x < 0) y=x else y=sqrt(x)
if (x < 0) {
 y = x
} else {
 y = sqrt(x)
}

Commands

In addition to statements, nccalc also includes several commands for manipulating
symbols and performing file manipulations, such as opening, reading, and writing
files. There are also commands for obtaining information about files and the data
they contain. A complete list of commands appears in the Commands section of
this document, but the following examples of some commands are given below:

openr “t2n170w.cdf”
nextr
status uspeed
whatis uspeed
close epsin
netCDF Calculator User’s Guide 9

Language Elements

10
In the following example a new file is created and variable t1 is written to the new
file. When creating a file the file must be explicitly closed with “close newfile”
where newfile is the variable containing the file reference.

newfile = openw “pointer.out” “CDF”
nextw newfile “t2n170w.out”
write newfile t1
close newfile

load (4*3)

Logical structures

Logical structures consist of while loops, if and if-else statements. Examples fol-
low:

while (xx < 20) {
b[1]=xx
xx=xx+1
}

if (xx < 0) yy=xx else yy=sqrt(xx)

if (xx < 0) {
yy = xx
} else {
yy = sqrt(xx)
}

Functions and Procedures

The only difference between functions and procedures is that functions return a
value, and procedures do not.

Functions include log functions, square root, and some additional functions such as
differentiation, integration, regridding and removing the mean value. There is also
netCDF Calculator User’s Guide

Functions and Procedures

ble
a-
an interactive data editing function, which allows a user to interactively edit the
numerical values of a one-dimensional field. In addition to the built-in functions,
nccalc also allows user written routines for manipulation of data. A complete list of
all functions is in the section on Functions. Scalar functions return scalar values,
and field functions return field values. Examples of some functions and their argu-
ments are given here:

abs(xx)
atan(t1)
log10(a)
sqrt(b*3)
edit(salin)
fft(f)
regrid(f1,f2)

Built-in functions for fields

For more information about the built-in functions available for working with data
fields, see the “Field” section of the “Expressions” chapter, which contains a ta
of these functions. They include the data editing function, integration,differenti
tion, calculation of a few oceanographic parameters and a regridding function.
netCDF Calculator User’s Guide 11

Language Elements

12
 netCDF Calculator User’s Guide

CHAPTER 4 Functions
Table of Functions

TABLE 1. Functions

Function: Returns: Arguments: Description:

abs(x) scalar scalar returns the absolute value of x.

field field returns a field containing the abso-
lute value of each element in the
original field.

atan(x) scalar scalar returns the arc tangent of x

cos(x) scalar scalar returns the cosine of x

exp(x) scalar scalar returns ex, exponential of x

field field returns a field containing ex of each
element in the original field.

int(x) scalar integer returns the integer portion of x, tru-
cated towards zero

log(x) scalar scalar returns ln x, logarithm base e of x

field field returns a field containing ln x of
each element in the original field
netCDF Calculator User’s Guide 13

Functions

14
log10(x) scalar scalar returns log x, logarithms base 10 of
x

field field returns a field containing log x for
each element in the original field

sin(x) scalar scalar returns sine of x

sqrt(x) scalar scalar returns ??, the square root of x

field field returns a field containing the square
root of each element of the original
field.

TABLE 1. Functions

Function: Returns: Arguments: Description:
netCDF Calculator User’s Guide

CHAPTER 5 Commands
netCDF Calculator User’s Guide 15

Commands

16
 netCDF Calculator User’s Guide

APPENDIX A Reference Manual
t
c-
er
asily.
Expressions

nccalc is an expression language, much like C: although there are several control-
flow statements, most statements such as assignments are expressions whose value
is disregarded. For example, the assignment operator = assigns the value of its right
operand to its left operand, and yields the value, so multiple assignments work.
nccalc knows about four different data types: scalar (double precision floating
point), string, slab (a specification for a four dimensional hyper-slab), and fields (a
sub-sampled region of a four dimensional data set). The syntax for each of the four
types are similar, however, not all operations are valid for all data types.

The nccalc command discussed here is a simple programmable interpreter for float-
ing point, string and field expressions. It has been extensively modified from hoc as
described in “The UNIX Programming Environment” by Kernighan and Pike.. I
has C-style control flow, function definition and the usual numerical built-in fun
tions. nccalc has been developed using lex, a lexical analyzer, and yacc, a pars
generator. This allows a systematic and consistent syntax to be implemented e
netCDF Calculator User’s Guide 17

18

a-
Scalar

A scalar is a single or array of double precision floating point numbers. Scalars are
distinct from fields in that scalar operators and functions operate on one number at
a time, whereas, fields have implied loops over all indices. The expression gram-
mar for scalars:

expr: number
| coordinate
| variable
| arr-var [expr]
| (expr)
| expr binop expr
| unop expr
| function (arguments)
| scalar (fexpr)

Numbers are floating point. The input format is that recognized by scanf(3): digits,
decimal point, digits, e or E, signed exponent. At least one digit or a decimal point
must be present; the other components are optional.

Coordinates are floating point numbers that are followed by a single letter N, S, E
or W. The sign of the number is changed if S or W are used.

Variable names are formed from a letter followed by a string of letters, underscores,
and numbers. arr-var refers to a variable that has been declared to be an array.
Arrays are only one dimensional and use 0-indexing. The syntax for creating an
array is:

array arr-var [expr]

binop refers to binary operators such as addition or logical comparison; unop refers
to the two negation operators, ‘!’ (logical negation, ‘not’) and ‘-’ (arithmetic neg
tion, sign change).

TABLE 2. Scalar operators in decreasing order of precedence.

binop description

^ exponentiation (FORTRAN **), right associative

! - (unary) logical and arithmetic negation

/ * division, multiplication

+ - addition, subtraction
netCDF Calculator User’s Guide

Expressions
Functions, as described later, may be defined by the user. Function arguments are
expressions separated by commas. There are also a number of built-in scalar func-
tions, all of which take a single argument, described below.

scalar is provided to convert field variable that contains only a single point to a
scalar. If scalar is used with a non-single point field, the first point will be used.

Logical expressions have value 1.0 (true) and 0.0 (false). As in C, any non-zero
value is taken to be true. As is always the case with floating point numbers, equality
comparisons are inherently suspect.

> >= <
<= == !=

relational operators: greater, greater or equal, less, less or
equal not equal (all same precedence)

&& logical AND (both operands evaluated)

|| logical OR (both operands always evaluated)

= assignment, right associative

TABLE 3. Built-in scalar functions.

function description

abs(x) |x|, absolute value of x

atan(x) arctan x, arc tangent of x

cos(x) cos x, cosine of x

exp(x) ex, exponential of x

int(x) integer part of x, truncated towards zero

log(x) ln x, logarithm base e of x

log10(x) log x, logarithm base 10 of x

sin(x) sinx, sine of x

sqrt(x) , square root of x

TABLE 4. Built-in constants.

constant value description

DEG 57.295779513082 , degrees per radian

E 2.7182818284590 e, base of natural logarithms

TABLE 2. Scalar operators in decreasing order of precedence.

binop description

x

180 π⁄
netCDF Calculator User’s Guide 19

20

ical
 data-
ar
String

Currently strings have a limited implementation. The expression grammar for
strings is:

sexpr: “ string ”
| str-var
| sexpr + sexpr

A string is any series of characters that is enclosed by double quotes. The only legal
operation is “+” which will concatenate two strings together. Str-var is a variable
name to which a string has been assigned.

Slab

A slab is a specification for a region of four dimensional space. Three geometr
dimensions and one time dimension. Slabs are used to select the portion of the
base that will be retrieved and stored in a field variable. The expression gramm
for slabs is:

slexpr: slab-var
| slxexpr
| slyexpr
| slzexpr
| sltexpr
| slexpr , slxexpr
| slexpr , slyexpr
| slexpr , slzexpr
| slexpr , sltexpr

GAMMA 0.57721566490153 , Euler-Mascheroni constant

PHI 1.6180339887498 , the golden ration

PI 3.1415926535897 , transcendental number

ERR_VERBOSE 1.0 print warning messages

ERR_FATAL 10.0 terminate on fatal condition

ERR_WARN 20.0 terminate on warning

TABLE 4. Built-in constants.

constant value description

γ

5 1+() 2⁄

π

netCDF Calculator User’s Guide

Expressions
Slab-var is a variable name to which a slab has been assigned. slxepxr, slyexpr, etc...
are single axis expressions defining the x, y, z and t extents, respectively. The syn-
tax slexpr , slxexpr causes the slab defined by slexpr to have its x-axis range
changed to that specified by slxexpr. The x-axis expression grammar is:

slxexpr: x= expr : expr : expr
| x= expr : expr
| x= expr
| x= *
| x= * : expr
| i= expr : expr : expr
| i= expr : expr
| i= expr
| i= *
| i= * : expr

The grammar for the y (j), z (k) and t (l) axes are similar. The first form of the
grammar allows the specification of a specific range with a stride, the second a spe-
cific range, the third a single value, and the fourth the entire range of data available.
The ranges can either be specified in terms of coordinates (x, y, z, and t) or index
values (i, j, k, and l). The stride is an integral number of data points. No algebra is
available for slabs.

Dbase

A dbase is the collection of epic system data files and the associated attributes.
Multiple files may be read and written by using dbase expressions. The expression
grammar for a dbase is

dbexpr: db-var
| openr sexpr
| openw sexpr sexpr

Db-var is a variable to which a dbase has been previously assigned. openr opens an
epic system pointer file indicated by sexpr for reading. openw opens an epic
pointer file indicated by the first sexpr for writing, the second sexpr indicates the
type of file to open (e.g. “EPIC”, “CDF”).

The default dbase for reading is automatically assigned to the db-var epsin and for
writing to epsout. The user can reassign these db-var’s in order to change the
defaults. Each invocation of openr will also create db-var’s named epsin_1,
epsin_2, etc. Each invocation of openw will create db-var’s named epsout_1,
epsout_2, etc.
netCDF Calculator User’s Guide 21

22

de

nal

 a
ith.
Field

A field is a multi-dimensional subset of data from a selected database. Operations
performed on fields include all the data values in the field. The expression grammar
for fields is:

fexpr: field-name [slexpr]
| field-name [slexpr] (dbexpr)
| fld-var
| fld-var [slexpr]
| farr-var [expr]
| (fexpr)
| fexpr binop fexpr
| fexpr binop expr
| expr binop fexpr
| function (fexpr)
| function (fexpr , fexpr)
| function (fexpr , slab-var)
| function (fexpr , [slexpr])
| function (fexpr , dfopt)
| window (fexpr , slexpr , type , expr)

Field-names are those available in the current database. For example, EPIC CTD
files usually have temperature, salinity, dynhgt etc.. available. Field-names are
either the generic variable name or the string “eps” followed by the variable co
(e.g. eps20 is water temperature). If the optional dbexpr is not specified epsin will
be used.

Fld-var is a variable to which a field has been previously assigned. farr-var refers to
a variable that has been declared to be an array. Arrays are only one dimensio
and use 0-indexing. The syntax for creating an array is:

field farr-var [expr]

It is also possible to declare a variable to be a field variable without specifying
slab. The field variable will be set to the shape of the field it is first associated w
The syntax for declaring a field variable is:

field fld-var
netCDF Calculator User’s Guide

Expressions

,
addi-

ow.
binop refers to binary operators such as addition.

Exponentiation is only valid when raising a field to a scalar power. The other
binop’s are valid for any combination of fields and scalars.

Field functions can not be defined by the user. There are built-in field functions
which take a one or two field arguments, described in Table 6 on page -23. In
tion, there are built-in field functions, which take one field argument and a slab
variable or [slab_expression] (which is used to define a range), described bel

TABLE 5. Field operators in decreasing order of precedence.

binop description

^ exponentiation (FORTRAN **), right associative

/ * division, multiplication

+ - addition, subtraction

= assignment, right associative

TABLE 6. Built-in field functions.

function description

abs(f) | f |, absolute value of f

exp(f) ef, exponential of f

log(f) ln f, logarithm base e of f

log10(f) log f, logarithm base 10 of f

sqrt(f) ,square root of f

coast(f) returns -1 if value > 1035 else 1

edit(f) interactive editing of f (1-d only)

deriv(f) derivative of f (1-d only)

intg(f) integration of f (1-d only)

sum(f) find the sum of all elements in the field

min(f) find the minimum element in the field

max(f) find the maximum element in the field

ave(f) find the average of all elements in the field

monthm(f) prints monthly means of f (1-d and TIME only)

demean(f) remove the mean of f

spread(f1,f2) spread the elements from f1 to fill the shape of f2

f

netCDF Calculator User’s Guide 23

24
max(f) and min(f) return the appropriate scalar. They also set variables to determine
the position of the value returned. These variables are max_loc_x, max_loc_y,
max_loc_z, and max_loc_t for maximums and the min equivalents for the mini-
mum.

sum(f) returns a scalar.

The three functions with the slab expression return an array of an appropriate
dimension. For example,

max(u,[x=*,t=*])

returns a y,z array of the maximum element in the x,t slab of each y and z.

spread(f1, f2) takes a field, f1, of lower dimension than f2, and spreads the values in
f1 over the size of f2. For example, if f1 were an array of only one value, and f2 is a
one dimensional array, the output is a 1 dimensional array the size of f2, and is
filled entirely with the value in f1.

sigmat(temp,sal) compute

theta(temp,sal) compute , potential temperature

sigma_theta(temp,sal) compute , potential density

regrid(f1,f2) regrid field f1 to the grid of f2

TABLE 7. Built-in field functions with range argument.

function description

ave(f,range) compute field averaged over range

prime(f,range) compute perturbation field by averaging over range

max(f,range) find the maximum element of each indicated range

min(f,range) find the minimum element of each indicated range

sum(f,range) find the sum of each indicated range

fft(f,range) fourier transform of f over the indicated range

window(f,range,type,taper) window f with window of given type and taper

TABLE 6. Built-in field functions.

function description

σt

Θ

σΘ
netCDF Calculator User’s Guide

Expressions

w

m

al

ty is

fft(f, range) returns the fourier transform of f in the dimensions indicated by range.
For example, range = [x=*], will compute the fourier transform in the x-dimension
and for range = [x=*,t=*], the two-dimensional fourier transform will be computed.
The field is always demeaned using the range and optionally windowed if the
“fft_window” and “fft_taper” string and scalar variables are set. The legal windo
types are cosine, hanning, hamming, or bartlett. “ fft_taper” is only used for win-
dow type cosine. The string variable “fft_norm” is used to normalize the transfro
output. The legal normalization types are spectra, density, or wavenumber. spec-
tra, the default, gives the raw fft output, the sum of the spectral values will equ
the total series variance. density gives the spectral density of the fft, produced by
dividing each component by the band width. The integral of the spectral densi
the total series variance. Finally, wavenumber gives the spectral density multiplied
by the wavenumber or frequency for each component. For example,

fft_norm=”density”
fft_window=”cosine”
fft_taper=0.1
fft(uvel, [x=*])

will compute the horizontal wave-number spectral density of uvel after applying a
cosine window with a 10% taper.

window is provided to allow the user to externally apply a window to a field. The
arguments are identical to those above.

The above finite difference operators diffx, diffy, diffz, and difft compute the differ-
ences in a single direction. More complicated difference operators can be built from

TABLE 8. Built-in field functions with an option argument.

function description

diffx(f,dfopt) compute finite difference in x axis direction

diffy(f,dfopt) compute finite difference in y axis direction

diffz(f,dfopt) compute finite difference in z axis direction

difft(f,dfopt) compute finite difference in t axis direction
netCDF Calculator User’s Guide 25

26

val-
E”

r;

nal

and
d to

 will

a,
c-

airs
pati-

a
the kernel operations through recursive calls. The argument dfopt determines how
the finite difference is calculated.

Where ∆ is the grid separation in meters. If the grid is not in meters then ∆ will be
computed from the latitude and longitude of the coordinates of the grid points.

The binary field operators and the built-in field functions with two arguments will,
depending on the value of the variable “error_opt”, give an error message and
regrid the fields to a common grid if they are on different grids. The allowable
ues of “error_opt” are: 0, don’t stop or give an error message; “ERR_VERBOS
don’t stop but do give an error message; “ERR_FATAL” only stop on fatal erro
and “ERR_WARN” stop on warning.

Editing Fields

edit(f) allows a user to interactively edit the numerical values of a one-dimensio
field. The dependent variable is point number. There are three nccalc variables that
are used to control the display region of the edit function. They are “edit_min”
“edit_max” which are used to set the y-axis range and “edit_dpts” which is use
set the x-axis range.

There are eleven “buttons” to the right of the drawing area that when selected
allow the user to manipulate the data values and the display. The NEXT, PREV,
SKIP TO, and REDRAW buttons allow the user to display the next section of dat
the previous section, skip to a specific starting point or redisplay the current se
tion, respectively.

A single point may be changed by first selecting a point by placing the cross-h
over the data point and then either pressing the space bar if on a Textronix com
ble device or a mouse button. The selected point will be indicated by drawing

TABLE 9. dfopt values.

dfopt difference calculation

CENTR1

CENTR2

fi 1 2⁄+
fi 1+ fi–

∆i 1 2⁄+

------------------=

fi
fi 1+ fi 1––

∆i 1 2⁄+ ∆i 1 2⁄–+
---------------------------------------=
netCDF Calculator User’s Guide

Expressions

odi-
small circle around it. The user can then enter in a new value by selecting the MISS
button (the data value will be set to 1.0E35), selecting the CHNG VAL button and
then using the cross-hairs to indicate the new value (the new value will be graphi-
cally indicated with a small box), or selecting the ENTR VAL button and then enter-
ing the new value from the keyboard (the new value will be graphically indicated
with a small box). The exact value of a data point can be determined by first select-
ing a point and then the PRNT VAL button.

A range of points may be changed at once by selecting the SEL RNGE button and
then selecting a starting point and ending point with the cross-hairs (the selected
points will be indicated by small circles). The selected range can then be set to the
missing data value by selecting the MISS button or have a linear fit by selecting the
LINEAR button.

To exit the function select the QUIT button.

File and Variable Attributes

The attributes that are stored as part of an EPIC data file are available to PPLUS via
two symbols set by nccalc. These are “eps$attr_name”, the attribute name
requested, and “eps$attr” the attribute value.

Attributes are also stored with the field variables. The variable attributes, varid
(EPIC variable code), name (variable short name), lname (long name), gname
(generic name), units (variable units) and frmt (variable suggested format) can be
retrieved when a field variable or expression is used.

The expression grammar for attributes is:

atexpr: fexpr . attr_name
| dbexpr . attr_name
| . attr_name

Attr_names are those available in the current database or field variable.

The attributes associated with a field variable and a writable data file can be m
fied. Attributes can only be created for a writable data file.

The assignment grammar for attributes is:

atasgn: fld-var . attr_name = sexpr
| db-var . attr_name = sexpr
netCDF Calculator User’s Guide 27

28
| fld-var . attr_name = expr
| db-var . attr_name = expr

When assigning varid to a field variable the value must be either a valid EPIC vari-
able code or a number less than zero. If varid is less than zero the variable attribute
information in the field variable will be used. NOTE: Use varid values less than
zero only with netCDF file format.

Statements and Control Flow

nccalc statements have the following grammar:

stmt: expr
| variable = expr
| sexpr
| str-var = sexpr
| slexpr
| slab-var = slab-var
| slab-var = [slexpr]
| dbexpr
| db-var = dbexpr
| fexpr
| fld-var = fexpr
| atexpr
| atasgn
| procedure (arglist)
| while (expr) stmt
| if (expr) stmt
| if (expr) stmt else stmt
| { stmtlist }
| print print-list
| return optional-expr

stmtlist: (nothing)
| stmtlist stmt

print-list: expr
| sexpr
| dbexpr
| print-list , expr
| print-list , sexpr
| print-list , dbexpr
netCDF Calculator User’s Guide

Commands
An assignment is parsed by default as a statement rather than an expression, so
assignments typed interactively do not print their value.

Note that semicolons are not special to nccalc: statements are terminated by new-
lines. This causes some peculiar behavior. The following are legal if statements:

if (x < 0) y=x else y=sqrt(x)

if (x < 0) {
 y = x
} else {

y = sqrt(x)
}

In the second example, the braces are mandatory: the newline after the if would ter-
minate the statement and produce a syntax error were the brace omitted. nccalc
does support multiple line commands, but the block of lines must start with the
begin command and finish with the end command.

The syntax and semantics of nccalc control flow facilities are basically the same as
in C. The while and if statements are just as in C, except there are no break or con-
tinue statements.

Commands

In addition to statements the nccalc system also has several commands for manipu-
lating symbols and operating of eps files. The syntax for these are:

command: clear var
| close
| close dbexpr
| nextr
| nextr dbexpr
| nextw sexpr
| nextw dbexpr sexpr
| write fexpr
| write (dbexpr) fexpr
| vector (fexpr , fexpr)
| line (fexpr , fexpr)
| load (expr)
| load (fexpr)
| load (fexpr , fexpr)
| load (ldexpr)
| status field-name
netCDF Calculator User’s Guide 29

30

sca-

| status field-name (dbexpr)
| status fld-var
| whatis field-name
| whatis field-name (dbexpr)
| whatis fld-var

The load expression grammar is:

ldexpr: x= field-name
| x= fexpr
| y= field-name
| y= fexpr
| z= fexpr
| u= fexpr
| v= fexpr

The memory storage of a variable of any type may be reclaimed by using the clear
command. The clear command has a single argument that is a variable name. An
eps pointer file and associated data file can be closed and storage reclaimed with
the close command. If the optional dbexpr argument is not given epsin is used. An
eps pointer file that has been opened for reading can be positioned to the next file
with the nextr command. Again if the optional dbexpr argument is not given epsin
is used.

An eps pointer file that has been opened for writing can have its current data file
closed an the next assigned with the nextw command. The sexpr argument indi-
cated the name of the data file to be opened for writing. If the optional dbexpr argu-
ment is not given epsout will be used.

A field described by fexpr can be written to the eps data file with the write com-
mand. If the optional dbexpr argument is not given epsout will be used.

The whatis command prints on the screen information about a field in a data file or
variable. This command is interactive only and causes no information to be trans-
ferred to PPLUS.

The status command is similar to the whatis command except that information
about a field in a data file or variable is loaded into PPLUS symbols. The following
table lists those symbols.

The load command is used to load a scalar value into the PPLUS symbol “eps$
lar”. The symbol can then be used in PPLUS labels. The load command supersedes
the functionality of the line and vector commands when the load expression gram-
netCDF Calculator User’s Guide

Commands
mar form is used. In the load expression grammar, x, y, and z are used to determine
what variable or axis will be used to for each axis, and u and v are used to deter-
mine vector field componets. This form of the load command will skip missing
data for 1-d fields if the variable load_clean is non-zero.

The vector command is used to load two scalar fields into PPLUS as a single vec-
tor field. The first fexpr is the x component of the vector and the second fexpr is the
y component. If the two fields are not on the same grid they will be regridded to a
common grid.

The line command is used to load two scalar fields into PPLUS as a single line. The
first fexpr provides the x values for the line and the second fexpr provides the y val-
ues for the line. If the two fields are not on the same grid they will be regridded to a
common grid.

TABLE 10. PPLUS symbols set by nccalc when status is called.

symbol description

eps$fld_name Long name of variable

eps$fld_min Minimum value of field (fld-var only)

eps$fld_max Maximum value of field (fld-var only)

eps$fld_xmin Minimum x axis value

eps$fld_xmax Maximum x axis value

eps$fld_ymin Minimum y axis value

eps$fld_ymax Maximum y axis value

eps$fld_zmin Minimum z axis value

eps$fld_zmax Maximum z axis value

eps$fld_tmin Minimum t axis value

eps$fld_tmax Maximum t axis value

eps$fld_nx Number of points in x axis

eps$fld_ny Number of points in y axis

eps$fld_nz Number of points in z axis

eps$fld_nt Number of points in t axis
netCDF Calculator User’s Guide 31

32
Input and Output

I/O - interaction with the keyboard

There is a requirement to be able to interact with the user, to have the calculator ask
questions of the user when there is not enough information provided to fulfill the
task. This will be done differently for the different interfacing programs using the
calculator. Every change here will contain an ifdef loop dependant on whether the
system is running through PPLUS, stand-alone, or with another program. We are
also toying with using remote procedure calls to do this communication.

nccalc has the facilities to read in and write out both scalar and field data.

Scalar

The input function read, like the other built-ins, takes a single argument. Unlike the
built-ins, though, the argument is not an expression: it is the name of a scalar vari-
able. The next number (as defined above) is read from the standard input and
assigned to the named variable. The return value of read is 1 (true) if a value was
read, and 0 (false) if read encountered end of file or an error.

Output is generated with the print statement. The arguments to print are a comma-
separated list of scalar expressions and strings, as in C. Newlines must be supplied;
they are never provided automatically by print.

Note that read is a special built-in function, and therefore takes a single parenthe-
sized argument, while print is a statement that takes a comma-separated, unparen-
thesized list:

while (read(x)) {
print “value is “, x, “\n”

}

Field

An EPIC SYSTEM pointer file is assigned by the openr statement. The openr
statement has a single quoted string as an argument. The string is the pointer file
name. The pointer file is deassigned by the close statement. Fields are read from
the database by using the field-name [slexpr] expression. Fields are loaded into
PPLUS by using the fexpr statement. Field assignments do not load the field into
netCDF Calculator User’s Guide

Input and Output

ut:
PPLUS. Currently, one and two dimensional fields can be loaded into PPLUS as
lines and grids, respectively. Lines are plotted with the PPLUS “plot” command
and grids with the “contour” command.

The following is an example of database specification and field input and outp

openr “epic.dat”
nextr
temp[z=*] return a field to application
nextr
temp[t=198201010000:198212310000]returns a field
close

openr “tbs-8”
nextr
sl=[x=*,z=*,t=4.5] get all x and z at 4.5 days
uvel=u[sl]
wvel=w[sl]
te=temp[sl]
wvel*te returns heat flux
vector(uvel,wvel) returns a two component vector

or

openr “tbs-8”
nextr
sl=[x=*,z=*,t=4.5]
w[sl]*temp[sl] returns heat flux
vector(u[sl],w[sl]) returns a vector

openr “test-1.cdf”
nextr
sl=[x=*,z=*,t=5]
tp=prime(t[sl],[x=*])
wp=prime(w[sl],[x=*])
wptp=ave(wp*tp,[x=*])
wptp/scalar(w_star[t=5]*t_star[t=5])returns normalized heat

flux

The next EPIC SYSTEM data file in the pointer file list is accessed by the next
statement. The following lists the PPLUS symbols set by e.

TABLE 11. PPLUS symbols set by nccalc when nextr is called.

symbol description

eps$pointerfile Pointer file name

eps$filetype File format

eps$filename Data file name

eps$datatype Type of data (CTD, TIME)
netCDF Calculator User’s Guide 33

34
.

eps$varlist List of variables in data file, separated with ;

eps$namelist List of generic names in data file, separated with ;

ppl$eof End of file read. YES if true, NO if false

TABLE 12. PPLUS symbols set when a field is loaded.

symbol description

eps$field Field name (short variable name)

eps$varname Field name (long variable name)

eps$varunits Field units

eps$latitude Field latitude

eps$longitude Field longitude

eps$depth Field depth

eps$date Date of field

eps$xtype type of x axis, (LONE, LAT, DEPTH, TIME, TEMP,
FIELD)

eps$xlabel x axis label

eps$xunits x axis units

eps$ytype type of y axis, (LAT, DEPTH, SALINITY, FIELD)

eps$ylabel y axis label

eps$yunits y axis units

eps$label field label

eps$lowercrnr string consisting of the minimum x, y, and z

eps$uppercrnr string consisting of the maximum x, y, and z

eps$xmin minimum value of the x axis

eps$xmax maximum value of the x axis

eps$ymin minimum value of the y axis

eps$ymax maximum value of the y axis

eps$tmin minimum time (only valid if axis is time)

eps$tmax maximum time (only valid if axis is time)

TABLE 11. PPLUS symbols set by nccalc when nextr is called.

symbol description
netCDF Calculator User’s Guide

Functions and Procedures

bout a
Functions and Procedures

Functions and procedures are distinct in nccalc, although they are defined by the
same mechanism. This distinction is simply for run-time error checking: it is an
error for a procedure to return a value, and for a function not to return one.

function: func name() stmt

procedure: proc name() stmt

name may be the name of any variable --- built-in functions are excluded. The defi-
nition, up to the opening brace or statement, must be on one line, as with the if
statements above.

Unlike C, the body of a function or procedure may be any statement, not necessar-
ily a compound (brace-enclosed) statement. Since semicolons have no meaning in
nccalc, a null procedure body is formed by an empty pair of braces.

Functions and procedures may take scalar arguments, separated by commas, when
invoked. Arguments are referred to as in the shell: $3 refers to the third (1-indexed)
argument. They are passed by value and within the functions are semantically
equivalent to scalar variables. It is an error to refer to an argument numbered
greater than the number of arguments passed to the routine. The error checking is
done dynamically, however, so a routine may have variable numbers of arguments
if initial arguments affect the number of arguments to be referenced (as is C’s
printf).

Functions and procedures may be recursive, but the stack has limited depth (a
hundred calls). The following shows a nccalc definition of factorial:

func fac() if ($1<=0) return 1 else return $1*fac($1-1)
fac(10)

 3628800
fac(5)

 120
or

func fac() {
if ($1 <= 0) {
return 1
} else {
return $1 * fac($1 - 1)
}
}
fac(5)

 120
netCDF Calculator User’s Guide 35

36
Reserved Keywords, Tokens, and Variables

nccalc reserves many keywords, tokens, and variables for its own use. These
include function names, flow control keywords, built-in constants, etc.

TABLE 13. Keywords

Name Description

array Create an array of scalar values.

begin Indicates the beginning of a multi-line command.

clear Delete a variable from nccalc.

close Close a netCDF file (read or write)

else Second part of an if - else statement

end Indicates the end of a multi-line command.

field Create an array of field values.

func Declares the beginning of a function definition.

if The first part of an if or if-else statement

line Superseded by load.

load Load data into PPLUS buffers.

nextr Read the next file.

nextw Create a new file and add it to the pointer file list.

openr Open a pointer/netCDF file for reading.

openw Open a new pointer file for output.

print Print to the screen.

proc Declares the beginning of a procedure definition.

read Read a scalar from the keyboard.

return Return from a function.

scalar Convert a field of length 1 to a scalar.

status Loads information about a field or variable into PPLUS.

vector Superseded by load.

whatis Prints on screen information about a field or variable.

while The first part of a while block.

window Applies a window to a field, used with spectral routines.

write Write fields and meta data to the specified with nextw.
netCDF Calculator User’s Guide

Reserved Keywords, Tokens, and Variables
TABLE 14. Tokens

Token Description

x= X or latitude of a range or x axis variable.

y= Y or longitude of a range or y axis variable.

z= Z or depth of a range.

t= Time component of a range.

i= X index of a range.

j= Y index of a range.

k= Z index of a range.

l= T index of a range.

u= Define u component of a vector.

v= Define v component of a vector.

TABLE 15. Variables

Name Description

DEG Degrees per radian

DefaultSlab The default slab to use for fields, can be overridden.

E Base of natural logarithm.

ERR_FATAL Terminate on fatal condition.

ERR_VERBOSE Print warning messages.

ERR_WARN Terminate on warning.

GAMMA Euler-Mascheroni constant.

PHI The golden ratio.

PI Transcendental number.

edit_dpts Set x-axis range for the edit function.

edit_max Set y-axis maximum for the edit function.

edit_min Set y-axis minimum for the edit function.

epsin Current file open for reading.

epsout Current file open for writing.

error_opt Error option for file reading.

fft_norm fft normalization option.

fft_option fft demeaning option (e.g. “nodemean”).
netCDF Calculator User’s Guide 37

38
fft_taper fft window taper.

fft_window fft windowing function

load_clean If non-zero do not load missing data to PPLUS.

max_loc_t Time location of maximum field value (max).

max_loc_x X location of maximum field value (max).

max_loc_y Y location of maximum field value (max).

max_loc_z Z location of maximum field value (max).

min_loc_t Time location of minimum field value (min).

min_loc_x X location of minimum field value (min).

min_loc_y Y location of minimum field value (min).

min_loc_z Z location of minimum field value (min).

TABLE 16. Functions

Name Description

abs Absolute value

atan Arc tangent

ave Average

coast Returns -1 if value > 1035 else returns 1

cos Cosine

demean Remove the mean

deriv Derivative

difft T finite difference

diffx X finite difference

diffy Y finite difference

diffz Z finite difference

edit Interactive edit of 1-d field

exp exponential

fft Fourier transform

int Integer part

intg Integration

TABLE 15. Variables

Name Description
netCDF Calculator User’s Guide

Reserved Keywords, Tokens, and Variables
log Natural logarithm

log10 Common lograithm

max Maximum value

min Minimum value

monthm Prints monthly means of field

prime Perturbation field

regrid Regrid field

sigma_theta Potential density

sigmat Sigma - T

sin Sine

spread Spread elements of field to fill shape

sqrt Square root

sum Compute sum

theta Potential Temperature

TABLE 16. Functions

Name Description
netCDF Calculator User’s Guide 39

40
 netCDF Calculator User’s Guide

APPENDIX B Annotated Examples
i-

d
ok
EPIC

Read and Plot Data

The following is a simple example of a PPLUS command file which reads a tem-
perature field from an EPIC formatted time series file. The EPIC pointer file, which
is a list of data file names, is named T95W.DAT. The generic EPIC variable code
for temperature is “temp”. The EPIC variable temperature could have been ind
cated equally well by the numeric EPIC key code of 20; to do this, replace
“temp’“by “eps20” in the following PPLUS command file. The EPIC key file use
by the e command is the file ep_key:epic.key. You can type or print this file, or lo
at it with the VAX editor (in read mode).

e openr “t95w.dat” Opens EPIC pointer file for read
e nextr Points to the first data file in the

list
e temp[t=198601010000:198701010000]Times are yyyymmddhhmm.

Read temperature field for 1986
plot Plot the temperatures
netCDF Calculator User’s Guide 41

42

di-

hich
e

5,
d is

extr”
glo-

s
ted
Calculations with Data

In this section there are examples of calculations with data fields. The concepts
used are e fields, slabs, variables and operators. An example of a field is all the tem-
peratures measured by a mooring on a current meter, or all of the temperatures mea-
sured by a CTD.

Calculation of wind speed

In the next example, zonal and meridional components of wind are read from an
input time series data file, and wind speed is calculated and plotted. Zonal wind
with a generic variable code of “u” is read into a variable named “uw’“and meri
onal wind, with a generic variable code of “v” is read into the e variable named
“vw”. The “[t=*]” is a “slab”, or a specification for a region of four dimensional
space. This example reads data from a one dimensional EPIC formatted file w
is time series of temperature, and this slab expression specifies all times on th
input data file. For a four dimensional netCDF EPIC data file, it could have
included specifications for x (longitude), y (latitude), and z (depth), e.g., [y=-5:
x=170:180, z=0:500, t=198701010000 : 198801010000]. The variable wnd_sp
the calculated wind speed. In this example, the e commands are intermingled with
the standard PPLUS commands taxis, ylab, and plot.

e openr “wind_95w.dat” Opens EPIC pointer file for read
e nextr Points to the first data file in the

list
if eps$data_type .eq. ‘TIME’ then
taxis,on Turn on time axis before
else loading data for plotting
taxis,off
endif
e uw=u[t=*] Read u values for all times
e vw=v[t=*] Read v values for all times
e wnd_spd=sqrt(uw^2+vw^2)Calculate wind speed
e wnd_spd Load wind speed into PPLUS plot buffer
ylab,wind speed, m/s Label y-axis
plot Plot the wind speed

Notice that the PPLUS global symbol eps$data_type has been set by the “e n
command. See the Chapter “Input and Output” section on “Fields” for PPLUS
bal symbols set by e commands.

Calculate average over several data fields

In following example, a mean salinity profile is computed from the salinity field
on all the CTD data files listed in the input EPIC pointer file. Depths are restric
netCDF Calculator User’s Guide

EPIC
to the range 0 and 500 db. Then plot the mean value and overplot the individual
salinities. Notice that many PPLUS commands are intermingled with e commands.
Use is made of the PPLUS symbol “c” and of the e command variable “sum”.

e openr “ctd95w.dat” Opens EPIC pointer file for read
set c 0 Initialize PPLUS symbol for use as

counter
e sum=0 Initialize e variable for accumulating

sum
c Start while loop
while ppl$eof .ne. “YES” thenLoop over all files
e nextr Points to the next data file in the list
inc c Increment the counter
e s’c’=salt[z=0:500] Read in salinities for 0 to 500 meters
e sum=sum+s’c’ Accumulate the sum of the salinities
e s’c’ Load c-th salinity into PPLUS plot buff-

ers
endw End of while loop
c End while loop
e avg=sum/(c-1) Calculate the average
e avg Load average into PPLUS plot buffers
line,’ppl$line_count’,,0Make this a solid line
yaxis,500,0,100 Set y-axis limits
xlab,Salinity Label x-axis
plot,Mean Salinity Plot mean and individual salinities

Time Series

The following will open the EPIC pointer file t95w.dat and compute differences
between the temperatures.

ppl>e openr “t95w.dat”
ppl>e nextr
ppl>e sl=[t=198201010000:198312310000]
ppl>e t1=eps20[sl]
ppl>e nextr
ppl>e t2=eps20[sl]
ppl>e t1-t2
ppl>plot

ppl>e openr “t95w.dat”
ppl>e nextr
ppl>e openw “out_edit.dat” “EPIC”
ppl>e nextw “out_file.001”
ppl>e temp=edit(eps20[t=*])
ppl>e write temp
ppl>e close epsout

ppl>e t95w = openr “t95w.dat”
ppl>e t110w = openr “t110w.dat”
ppl>e nextr t95w
ppl>e nextr t110w
netCDF Calculator User’s Guide 43

44

is
0,
ld
 is
le
.

ing
e dis-

 Tex-
int
 new
ct
 box

ew
oint

ed
value
ja-
ppl>e sl=[t=198201010000:198312310000]
ppl>e eps20[sl](t95w) - eps20[sl](t110w)
ppl>plot

CTD

Data Editing

The e command includes an interactive data editing function, which allows a user
to interactively edit the numerical values of a one-dimensional field. It is initiated
with a PPLUS command like the following: “e temp_edit = edit(eps20[z=*])”. Th
command edits the EPIC variable temperature (eps20 means epic key code 2
which is the EPIC key code for temperature). It puts the edited temperature fie
values into the e variable “temp_edit”. Once the edit function is invoked, the user
put into graphics mode. The x-axis is point number and the y-axis is the variab
being edited. Editing selections appear on the right hand portion of the screen

The editing selections are in the form of eleven “buttons” to the right of the draw
area. These can be selected by the user to manipulate the data values and th
play. The NEXT, PREV, and REDRAW buttons allow the user to display the next
section of data, the previous section or redraw the current section. The SKIP TO
button lets the user skip to a desired point number.

A single point may be changed by first selecting a point. Do this by placing the
cross-hairs over the data point, and then either pressing the space bar (if on a
tronix compatible device) or a mouse button (on an X device). The selected po
will be circled to indicate it has been selected. The user can then: (1) enter in a
value by selecting the MISS button (the data value will be set to 1.0E35), (2) sele
the CHNG VAL button and use the cross-hairs to indicate the new value (a small
will be drawn around the new value), (3) select the ENTR VAL button and then
enter the new value from the keyboard (a small box will be drawn around the n
value). The exact value of a data point can be determined by first selecting a p
and then the PRNT VAL button.

A range of points may be changed at once by selecting the SEL RNGE button and
then selecting a starting point and ending point with the cross-hairs (the select
points will be circled). The selected range can then be set to the missing data
by selecting the MISS button, or be replaced by a linear fit between the good ad
netCDF Calculator User’s Guide

EPIC
cent points by selecting the LINEAR button. The REDRAW button always redraws
the display.

NOTE: Notice that to work with a single data point, first select the point, then select
the buttons to define the action to be taken. In contrast, to work with a range of data
points, first select the button SEL RNGE, then select the first and last data point in
the range, and finally, select the buttons to define the action to be taken.

To exit the edit function, select the QUIT button.

CTD data editing

The example in this section illustrates the data editing function in the e command.
Here, temperature from a CTD data file is edited with the e editing function. The
input pointer file is opened and then the pointer is positioned at the first data file,
which contains the temperature to be edited. An output pointer file and data file are
opened for write to receive the edited temperature. Once the temperature is edited,
it is written out to the new data file. The EPIC variables in the original CTD data
file are listed with the PPLUS command SHOW EPS$VARLIST. They will be
identified in the list by their EPIC variable key codes. A single PPLUS e statement
both reads and writes out each of these variables.

e openr “cast8.dat” Open EPIC pointer file for read
e nextr Position pointer on next (first) data

file
e openw “final8.dat” “EPIC”Open pointer file for write
e nextw “tw287c008.edt”Name next data file to be written
e temp=edit(eps20[z=*])Edit temperature field from input data

file
e write temp Write out edited temperature
show eps$varlist List EPIC key codes for variables in

data file
e write eps41[z=*] Write out variable from input
e write eps70[z=*] Write out variable from input
e write eps60[z=*] Write out variable from input
e write eps10[z=*] Write out variable from input
e write eps50[z=*] Write out variable from input
e write eps30[z=*] Write out variable from input
e write eps71[z=*] Write out variable from input
e write eps110[z=*] Write out variable from input
e write eps111[z=*] Write out variable from input
e write eps112[z=*] Write out variable from input
e close epsout Close output pointer file
e close epsin Close input pointer file
netCDF Calculator User’s Guide 45

46

” the
CTD data editing with an e variable for the slab definition

The next example simplifies the preceding example by assigning a variable “s
value of the slab [z=*], and illustrates the use of an e variable for a slab definition
which will be used repeatedly.

e openr “cast8.dat” Open EPIC pointer file for read
e nextr Position pointer on next (first) data

file
e openw “final8.dat” “EPIC”Open pointer file for write
e nextw “tw287c008.edt”Name the next data file to be written
e s=[z=*]
e temp=edit(eps20[s]) Edit temperature field from input
e write temp Write out edited temperature
show eps$varlist List EPIC key codes for variables in

data file
e write eps41[s] Write out variable from input
e write eps70[s] Write out variable from input
e write eps60[s] Write out variable from input
e write eps10[s] Write out variable from input
e write eps50[s] Write out variable from input
e write eps30[s] Write out variable from input
e write eps71[s] Write out variable from input
e write eps110[s] Write out variable from input
e write eps111[s] Write out variable from input
e write eps112[s] Write out variable from input
e close epsout Close output pointer file
e close epsin Close input pointer file

Multi-dimensional Data

PPL$EXAMPLES:CDF.DAT is a pointer file for a Unidata netCDF EPIC System
data file (TBS-8.CDF) containing data from a 2-d deep convection model. (This
means that the ascii file PPL$EXAMPLES:CDF.DAT contains a single line with
the data file name TBS-8.CDF.) EPIC generic variable field names are found with
the EPIC EPS variable key codes in the file EP_KEY:EPIC.KEY. The following
describes the data in this data file:

TABLE 17.

Index Variable Description Limits

i x=distance (meters) 30m to 7650 m

j

k z=depth (meters) 30m to 1700m

l t=time (days) 3.8 days to 5 days (hourly)
netCDF Calculator User’s Guide

EPIC
Extracting a plane of data

The following PPLUS commands illustrate the use of the e command to slice 3-
dimensional data set and produce a labeled contour plot of temperature with time
on the xaxis, depth on the y-axis. Notice that the slab definition is made with all
times and all depths indicated by t and z, whereas the index i is used to indicate that
only the first distance is to be extracted. In this slab definition, the time and depth
selection could have been k=* and l=* instead of t=* and z=*.

e openr “cdf.dat” open the pointer file
e nextr point to the first data file
e (alldep=temp[t=*,z=*,i=1])extract desired slice of data
xlab,’eps$xtype’ use symbol to label the x-axis
ylab,’eps$ytype’ use symbol to label the y-axis
contour ‘eps$label’ use symbol to label the plot

Extracting a line of data

The following code extracts a time series of u and a time series of v, calculates
speed (square root of u squared plus v squared) and plots it. It also illustrates the
use of an e variable assignment for the slab value of [i=1:1,t=*,k=2:2]. Note that the
slab definition can contain mixed indices and space-time axis references.

e openr “cdf.dat” open the pointer file
e nextr point to the first data file
e s=[i=1:1,t=*,k=2:2] assign the slab a variable name s
e u1=u[s] extract desired time series
e v1=v[s] extract desired time series
e speed=sqrt(u1^2+v1^2)calculate speed from u and v
e speed load speed into PPLUS plot buffer
taxis,on turn on the time axis
ylab,Calculated Speed label the y-axis
plot Speed at i=1, k=2plot the calculated speed

TABLE 18.

Variable Fields EPS Code Generic Name

zonal velocity eps326 u

vertical velocity eps328 w

temperature eps20 temp

salinity eps40 sal
netCDF Calculator User’s Guide 47

48
Reading and Writing EPIC files

This section describes methods of reading information, such as header information
or attributes from EPIC data files. It also describes techniques for writing attributes
and data into EPIC data files. In addition, it describes exchanging the information
between e function variables and PPLUS symbols. Examples will be used to illus-
trate these techniques. See the Expressions Chapter, which has a section on File and
Variable Attributes, for more general information.

To retrieve the value of an attribute from an EPIC system data file, use the e func-
tion to open the file, and proceed as illustrated below:

ppl>e openr “t95w.dat”Open the file
ppl>e nextr Read attributes
ppl>e epsin.DATA_ORIGINPut value of this attribute into PPLUS

symbol eps$attr
ppl>show eps$attr

In the preceding example, t95w.dat is an EPIC pointer file, containing a list of EPIC
formatted time series data files. The value of the attribute named DATA_ORIGIN is
retrieved (epsin is the database expression that e assigns to the first EPIC pointer
file opened). The value of this attribute is stored for use in the PPLUS global sym-
bol named eps$atrr. A list of the EPIC system attributes can be found in the EPIC
system documentation.

In the next example, PPLUS e commands are used to create individual 1-d epic-for-
matted time series from a 2-d file containing moored Acoustic Doppler current
measurements. The input file contains water velocity data at a single latitude,longi-
tude as a function of depth and time. Output 1-d data files are time series, one for
each of the selected depths. This example also makes use of PPLUS symbol substi-
tution (note the PPLUS symbol zindx), and the special function ($integer), which
are described in the PPLUS manual (see the chapter on PPLUS Command Files).

ppl>e openr “rd_600.vel_cdf”
ppl>e nextr
ppl>c
ppl>c Open the output pointer file for files in Classic EPIC

format
ppl>c
ppl>e openw “series.dat” “EPIC”
ppl>e nextr
ppl>c
ppl>c Select out the 5th through the 8th depth levels (and all

times)
ppl>c Write these out as individual time series for each

depth.
netCDF Calculator User’s Guide

EPIC

et
n the
 com-
ppl>c
ppl>set zndx 5
ppl>while zndx .le. 8 then
ppl>c
ppl> e u1=eps1205[t=*,k=’zndx’]
ppl> e v1=eps1206[t=*,k=’zndx’]
ppl> e u1.varid=1205
ppl> e v1.varid=1206
ppl> e nextw “uv.’zndx’”
ppl> e write u1
ppl> e write v1
ppl> set zndx ‘zndx’ + 2.
ppl> set zndx $integer(zndx)
ppl>c
ppl>endw
ppl>e close epsin
ppl> close epsout

In the next example, a field of data is written out to an EPIC data file. The two com-
ponents of wind are read in, and then wind speed is calculated. Since the output
variable, wind speed, is not the same as the input variables, it is assigned an
attribute VARID, which is the EPIC variable key code. In this example, wind speed
is calculated, and then written out in an EPIC formatted file. The EPIC variable
code for wind speed in meters/sec is 401. For a complete list of EPIC variable
codes, see the EPIC system documentation.

ppl>e openr “t95w.dat”
ppl>e nextr
ppl>e openw “out_speed.dat” “EPIC”
ppl>e nextw “out_file.001”
ppl>e u1=u[t=*]
ppl>e v1=v[t=*]
ppl>e wspeed=sqrt(u1^2+v1^2)
ppl>e wspeed.VARID=401
ppl>e write wspeed
ppl>e close epsout

In the following example, data is read from a 3-d EPIC netCDF file, containing
sub-surface water temperature data at several depths from several buoys deployed
from 5N to 5S along 110W. An area-filled contour plot is made of the data at 2N.
Note the use of the PPLUS global symbol named ppl$ylen (see the PPLUS manual
chapter on PPLUS Command Files). Note use of the e command “status” to s
PPLUS global symbols named eps$fld_tmin and eps$fld_tmax, and their use i
PPLUS time command to set the time axis extrema. Also note the use of the e
mand named whatis to see pertinent information about the field named t1.

ppl>e openr “/users/dai/data/t110w.cdf”
ppl>e nextr
ppl> t1=temp[t=*,z=*,y=2N]
ppl>c
netCDF Calculator User’s Guide 49

50
ppl>c Use “whatis” to see pertinent information about variable
t1

ppl>c
ppl>e whatis t1
ppl>e t1
ppl>c
ppl>c Set up time axis
ppl>c
ppl>e status t1
ppl>taxis,on
ppl>time,w’eps$fld_tmin’,w’eps$fld_tmax’,w’eps$fld_tmin’
ppl>c
ppl>c Color bar and contour levels
ppl>c
ppl>set xp ‘ppl$xlen’ + .25
ppl>cbaxis,10,35,5
ppl>cblint,1
ppl>colorbar:nouser ‘xp’ 0 1 ‘ppl$ylen’
ppl>c
ppl>lev () (10,27,1,-3)(27,35,1,-3)
ppl>lev dark(10,25,5) dark(25,35,2)
ppl>lev (10,25,5,-1) (25,35,2,-1)
ppl>area
netCDF Calculator User’s Guide

APPENDIX C PPLUS Interface
nt
data
e variables and PPLUS plot buffers

In the preceding example, data was never loaded into the PPLUS plotting data buff-
ers, nor is it plotted. Assignment statements like temp=eps20[z=*] never load data
into PPLUS. They just load data into the field variable name “temp.” Assignme
statements don’t load data into PPLUS plot buffers. Other statements do load
into the PPLUS plot buffers. The following examples illustrate this.

temp=eps20[z=*] is an assignment statement (does not
load into PPLUS plotting buffers)

(temp=eps20[z=*]) is not an assignment statement. It is a
field expression because it is enclosed
in parentheses (does load into PPLUS
plotting buffers)

temp*20 is not an assignment statement It is a
field expression (multiplies the field
temp by 20 and loads result into PPLUS
plotting buffers)
netCDF Calculator User’s Guide 51

52
Loading PPLUS Buffers

PPLUS Symbols

Using the Calculator with PPLUS
netCDF Calculator User’s Guide

APPENDIX D Proposed New Features
 by

et-
ns
netCDF Calculator API
The application programmers interface (API) for the netCDF calculator is designed
to allow the calculator to be linked with and controlled by a user’s application.
Routines that initialize the calculator and send strings to be parsed by nccalc are
provided. In addition, two routines, which are defined below, must be provided
the user.

nccalc routines

Four routines are provided to initialize nccalc, provide nccalc with a string to
parse, provide nccalc data, and utility routines to free storage associated with
nccalc structures. Additionally, four routines are provided to assist the user in g
ting information from nccalc. A header file ncc.h contains the necessary definitio
for the following.
netCDF Calculator User’s Guide 53

54

re us-

p-

 Af-

ned

 the
he
e com-

ciat-
utine
nccalc Control Routines

The nccalc control routines, along with the memory management routines are the
commonly used commands provided by nccalc. They allow the user to initialize the
queues and stacks, make nccalc commands, and check for errors.

void ncc_init()

ncc_init() is used to setup built in constants and functions to initialize com-
mand queue and data stack. The user’s application must call ncc_init befo
ing any other nccalc calls.

NccResult* ncc_command(NccMessage* lines)

linesstructure containing one or more strings to be parsed by nccalc.

ncc_command() is the way that commands are sent to nccalc. The user’s appli-
cation creates an NccMessage which contains the command for nccalc to carry
out. Normal commands will be only one line, but this structure leaves the o
tion for multiple line commands. nccalc takes this line sent to it, parses it and
performs the function. If during the parsing additional input is required nccalc
will request additional input via the ncc_nexline() or ncc_request routines.
ter completing the command, nccalc will return a pointer to a structure of type
NccResult explained below. The strings must be NULL terminated.

char* ncc_error_message

External character string that points to an error message if the NccResult retur
from an ncc_command() call has the error flag set.

Memory Management

The data sent back to the user’s application from the ncc_command becomes
responsibility of the application. This includes the responsibility for freeing up t
space used by it. These commands assist the user in freeing some of the mor
plicated structures.

void ncc_freeresult(NccResult* result)

ncc_freeresult() is a routine provided to aid in reclaiming the storage asso
ed with results passed to the user from the ncc_command routine. This ro
netCDF Calculator User’s Guide

nccalc routines

there

ri-
will free the memory used by the result structure as well as any structure it
points to.

void ncc_freefield(NccField* field)

ncc_freefield() should be used to free a field sent back in a NccResult structure
that no longer has a result pointing to it. It will free the memory used by the
field as well as all other arrays and structures it points to.

void ncc_freemsg(NccMessage* msg)

ncc_freemsg() is a routine which aids in freeing the space used by the NccMes-
sage type. This routine follows the linked list and frees all of the memory used
by it. It is not necessary to use this routine if ncc_freeresult has been run on a
structure which points to the message.

Load User Field

The user does not always want to load information the way nccalc does it and from
the sources nccalc handles. This routine, therefore allows the user a method for put-
ting data into nccalc that it created or received in some other way.

void ncc_put_field(char* name, NccField* fld)

Allows the user’s application to directly load a field into nccalc.

Get ncc Data

Although ncc_command returns the data it creates in it’s NccResult construct,
may be times that the user application wants to query nccalc to get the data that it is
storing. These routines allow the application to directly query the value of a va
able that has been set in nccalc.

double ncc_get_scalar(char* name)

This routine returns the value of the scalar variable with the given name.

NccField* ncc_get_field(char* name)

Returns the value of the field with the given name.
netCDF Calculator User’s Guide 55

56

ruc-
char* ncc_get_string(char* name)

Returns the value of the string with the given name.

NccVector* ncc_get_vector(char* name)

Returns the value of the vector with the given name.

User routines

Two routines must be written by the user to provide nccalc with additional input.
The ncc.h header file contains the definition of the nccalc structures and function
prototypes.

NccMessage* ncc_nextline()

If nccalc requires additional input in order to complete a syntactical construc-
tion ncc_nextline() is called by nccalc. ncc_nextline() allows the user to input
multiple line procedure definitions, if-then-else constructs, etc. Each string
must be null terminated, and the last line must have a NULL next pointer.

char* ncc_request(NccMessage* prompt)

promptStructure containging strings used to prompt the user for input.

ncc_request() returns a null terminated string to nccalc containing the user re-
sponse to the prompt string. nccalc will convert the string to double, long, or
character as necessary.

Data Structures

NccResult

The ncc_command() function returns to the user’s application an NccResult st
ture. This structure is shown below

typedef struct NccResult {
netCDF Calculator User’s Guide

Data Structures

ponse

 a
int type; /* type of data returned */
int error; /* error indication */
union {

double val; /* scalar value */
NccField *fld; /* pointer to field */
NccVector *vect; /* pointer to vector */
char *str; /* pointer to character string */
NccMessage *msg; /* pointer to message */
} u;

NccResult *next; /* pointer to next result */
} NccResult;

The value returned in type is equal to one of the following: NCC_MESSAGE,
NCC_VECTOR, NCC_FIELD, NCC_SCALAR, NCC_STRING, or NCC_NONE.
By looking at this type, the user’s application can tell which part of the union is
valid.

NCC_MESSAGE is used to pass the user character messages, such as in res
to a whatis command.

NCC_NONE is returned when the command does not return anything, such as
slab assignment.

The error element returns a non-zero result if there were any problems.

NccField

typedef struct NccField {
char* name; /* name of field */
char* long_name; /* long name of field */
char* units; /* units of field */
int dims[4]; /* dimensions of storage */
float* arr; /* pointer to field storage */
float* axis[4]; /* pointer to axis storage */
long* taxis; /* pointer to t-axis storage */
long t_origin[2]; /* origin of t-axis in eptime format */
char* axname[4]; /* names of axes */
char* axunits[4]; /* units of axes */

} NccField;

If axis[3] is a NULL pointer then taxis contains valid information, otherwise,
axis[3] contains the axis values.

NccVector

typedef struct NccVector {
NccField* xcomp; /* the vector’s x component */
netCDF Calculator User’s Guide 57

58
NccField* ycomp; /* the vector’s y component */
NccField* zcomp; /* the vector’s z component */

} NccVector;

If any component is missing, the corresponding vector component will be NULL

NccMessage

typedef struct NccMessage {
char* str; /* one line of the message */
NccMessage* next; /* a pointer to the next line */

} NccMessage;

Each line of the message (str) must be NULL terminated. The next pointer in the
last line of the message is NULL.

Inquiry commands

Additional whatis commands look like:

| whatis whopt field-name
| whatis whopt fld-var
| whatis whopt db-var
| whatis whopt slab-var
| whatis whopt fld-var . attr_name
| whatis whopt db-var . attr_name
| whatis whopt . attr_name
| whatis whopt vect-var
| whatis whopt var

TABLE 19. whatis actions.

variable name action

field-name returns a description of the field

field-var returns a description of the field pointed to by field-var

db-var returns information about the database pointed to by db-var

slab-var returns the present value of the slab dimensions

field-var.attr_name returns information about the given attribute

db-var.attr_name returns information about the attribute given

.attr_name returns information about the given attribute
netCDF Calculator User’s Guide

More Field Functions
The whatis function returns information about the object given. The kind of infor-
mation is dependent on the type of element it is. The amount of information given
is dependent upon the options listed below

Note that if your element in question is a var, -f and -b have no effect.

More Field Functions

regression returns?

One more scalar function.

vect-var returns information about the given vector

var returns the value of the variable

TABLE 20. whopt values.

whopt action

-f full - displays all available information about the object

-b brief - displays very little about object

TABLE 21. More field functions.

function description

regression()

TABLE 22. Modulo function

expr1 % expr2 returns expr1 modulo expr2

TABLE 19. whatis actions.

variable name action
netCDF Calculator User’s Guide 59

60
Vector expressions

Triplets of field-name or fld-var can be logically bound into a single vect-var. The
vector creation syntax is:

vector vect-var (fld-var , fld-var , fld-var)

vector vect-var (field-name , field-name , field-name)

The components of vectors are not required to be on the same grid. However, sev-
eral of the vector functions do have this requirement. Because vectors are logical
constructs a vector must be explicitly created before values can be assigned to it.
For example,

field gx Declare field gx
field gy Declare field gy
field gz Declare field gz
vector tgrad(gx, gy, gz)Bind gx,gy,gz into vector tgrad
tgrad = grad(t) Compute the gradient of t.

vexpr: vect-var
| vect-var [slexpr]
| (vexpr)
| vexpr binop vexpr
| vexpr binop expr
| expr binop vexpr
| function (fexpr)
| function (vexpr)
| function (vexpr , vexpr)

binop refers to binary operators such as addition and are done vector component by
vector component and field element by field element. Vector components do not
have to be on the same grid for the vector binary operators.

TABLE 23. Vector operators in decreasing order of precedence.

binop description

^ exponentiation (FORTRAN **), right associative

/ * division, multiplication

+ - addition, subtraction
netCDF Calculator User’s Guide

Vector expressions

 sev-

o it.
Exponentiation is only valid when raising a vector to a scalar power. The other
binop’s are valid for any combination of fields and scalars.

curl and cross require the vector components to be on the same grid.

Vector expressions

Triplets of field-name or fld-var can be logically bound into a single vect-var. The
vector creation syntax is:

vector vect-var (fld-var , fld-var , fld-var)

vector vect-var (field-name , field-name , field-name)

The components of vectors are not required to be on the same grid. However,
eral of the vector functions do have this requirement. Because vectors are logical
constructs a vector must be explicitly created before values can be assigned t
For example,

field gx Declare field gx

TABLE 24. Built-in vector functions.

function description

curl(v) , curl of vector v

grad(f) , gradient of field f

cross(v1,v2) , vector cross product of vectors v1 with v2

absv(v) | v |, absolute value of vector v

expv(v) ev, exponential of vector v

logv(v) ln v, logarithm base e of vector v

log10v(v) log v, logarithm base 10 of vector v

sqrtv(v) ,square root of vector v

avev(v,range) compute vector averaged over range

primev(v,range) compute perturbation vector by averaging over range

TABLE 25. Built-in field functions with vector arguments.

function description

div(v) , divergence of vector v

dot(v1,v2) , dot product vectors v1 and v2.

 ∇×

 ∇

v1 v2×

v

 ∇•

v1 v2•
netCDF Calculator User’s Guide 61

62
field gy Declare field gy
field gz Declare field gz
vector tgrad(gx, gy, gz)Bind gx,gy,gz into vector tgrad
tgrad = grad(t) Compute the gradient of t.

vexpr: vect-var
| vect-var [slexpr]
| (vexpr)
| vexpr binop vexpr
| vexpr binop expr
| expr binop vexpr
| function (fexpr)
| function (vexpr)
| function (vexpr , vexpr)

binop refers to binary operators such as addition and are done vector component by
vector component and field element by field element. Vector components do not
have to be on the same grid for the vector binary operators.

Exponentiation is only valid when raising a vector to a scalar power. The other
binop’s are valid for any combination of fields and scalars.

TABLE 26. Vector operators in decreasing order of precedence.

binop description

^ exponentiation (FORTRAN **), right associative

/ * division, multiplication

+ - addition, subtraction

TABLE 27. Built-in vector functions.

function description

curl(v) , curl of vector v

grad(f) , gradient of field f

cross(v1,v2) , vector cross product of vectors v1 with v2

abs(v) | v |, absolute value of vector v

exp(v) ev, exponential of vector v

log(v) ln v, logarithm base e of vector v

log10(v) log v, logarithm base 10 of vector v

sqrt(v) ,square root of vector v

 ∇×

 ∇

v1 v2×

v

netCDF Calculator User’s Guide

Grid generation
curl and cross require the vector components to be on the same grid.

Grid generation

The creation of grids that do not already exist as a netCDF variable can be useful in
accurately reproducing the finite difference expression used in a model. Grids can
be either regular (evenly spaced points in a dimension) or irregular (unevenly
spaced points in a dimension) or mixed. Axis expression grammar is:

axexpr: ax-var
| axis (fexpr , [slexpr])
| axis (expr : expr : expr)
| axis (axlist)

The syntax for an axis list is:

axlist: number
| axlist , number

The grammar for field creation is:

field fld-var with axexpr
field fld-var like fld-var

The additional stmt type will be added

stmt: fld-var [slexpr] = fexpr

ave(v,range) compute vector averaged over range

prime(v,range) compute perturbation vector by averaging over range

TABLE 28. Built-in field functions with vector arguments.

function description

div(v) , divergence of vector v

dot(v1,v2) , dot product vectors v1 and v2.

TABLE 27. Built-in vector functions.

function description

 ∇•

v1 v2•
netCDF Calculator User’s Guide 63

64
I/O - interaction with the keyboard

There is a requirement to be able to interact with the user, to have the calculator ask
questions of the user when there is not enough information provided to fulfill the
task. This will be done differently for the different interfacing programs using the
calculator. Every change here will contain an ifdef loop dependant on whether the
system is running through PPLUS, stand-alone, or with another program. We are
also toying with using remote procedure calls to do this communication.

Conditional evaluation

The where grammar is:

where (fexpr) stmt
| where (fexpr) stmt else stmt

The where statement is similar to the if statement, except that it does a test on every
element of the field rather than the field itself. For example

where (a<0) a=0 else a=1

goes through field a, and changes every element in it to 0 or 1 depending on
whether it is <0 or not. As with if, it is also valid to use multiple lines:

where (a<0) {
 a=0
} else {
 a=1
}

netCDF Calculator User’s Guide

Index
A
abs 13, 19, 23
array 18
atan 13, 19
ave 23, 24

C
coast 23
commands 29

clear 29
close 29
line 29
load 29
nextr 29
nextw 29
status 29
vector 29
whatis 30
write 29

constant
DEG 19
E 19

ERR_FATAL 20
ERR_VERBOSE 20
ERR_WARN 20
GAMMA 20
PHI 20
PI 20

cos 13, 19
cosine 25

D
date format 4
demean 23
deriv 23
difft 25
diffx 25
diffy 25
diffz 25

E
edit 23
exp 13, 19, 23
expressions 17
netCDF Calculator User’s Guide 65

Index

66
dbase 21
field 22
scalar 18
slab 20
string 20

F
fft 24
field

attributes 27
frmt 27

units 27

varid 27

attributres
name 27

attrubutes
gname 27

lname 27

editing 26
edit_dpts 26

edit_max 26

edit_min 26

frmt 27
functin

field
abs 13

demean 23

function
field

abs 23

ave 23, 24

coast 23

deriv 23

difft 25

diffx 25

diffy 25

diffz 25

edit 23

exp 13, 23

fft 24

intg 23

log 13, 23

log10 14, 23

max 23, 24

min 23, 24

monthm 23

prime 24

regrid 24

sigma_theta 24

sigmat 24

spread 23

sqrt 14, 23

sum 23, 24

theta 24

window 24

scalar
abs 13, 19

atan 13, 19

cos 13, 19

exp 13, 19

int 13, 19

log 13, 19

log10 14, 19

sin 14, 19

sqrt 14, 19

G
gname 27

I
int 13, 19
intg 23

L
lname 27
log 13, 19, 23
log10 14, 19, 23
netCDF Calculator User’s Guide

Index
M
max 23, 24
min 23, 24
monthm 23

N
name 27

P
prime 24

R
regrid 24

S
sigma_theta 24
sigmat 24
sin 14, 19
spectra

fft 24
fft_norm 25
fft_taper 25
fft_window 25
window 24

spread 23
sqrt 14, 19, 23
statements 28
sum 23, 24

T
theta 24
time format 4

U
units 27

V
varid 27

W
window 24
netCDF Calculator User’s Guide 67

	netCDF Calculator User’s Guide
	Table of Contents
	CHAPTER 1 Introduction
	CHAPTER 2 Tutorial Overview
	Introduction
	Specifying Time

	CHAPTER 3 Language Elements
	Data Types
	Operators
	Expressions
	Statements
	Commands
	Logical structures
	Functions and Procedures

	CHAPTER 4 Functions
	Table of Functions

	CHAPTER 5 Commands
	APPENDIX A Reference Manual
	Expressions
	Statements and Control Flow
	Commands
	Input and Output
	Functions and Procedures
	Reserved Keywords, Tokens, and Variables

	APPENDIX B Annotated Examples
	EPIC

	APPENDIX C PPLUS Interface
	Loading PPLUS Buffers
	PPLUS Symbols
	Using the Calculator with PPLUS

	APPENDIX D Proposed New Features
	netCDF Calculator API
	nccalc routines
	User routines
	Data Structures
	Inquiry commands
	More Field Functions
	Vector expressions
	Grid generation
	I/O - interaction with the keyboard
	Conditional evaluation

	Index

